Empirical Studies on the Functional Complexity of Software in Large-Scale Software Systems

Author:

Wang Yingxu1,Chiew Vincent1

Affiliation:

1. University of Calgary, Canada

Abstract

Functional complexity is one of the most fundamental properties of software because almost all other software attributes and properties such as functional size, development effort, costs, quality, and project duration are highly dependent on it. The functional complexity of software is a macro-scope problem concerning the semantic properties of software and human cognitive complexity towards a given software system; while the computational complexity is a micro-scope problem concerning algorithmic analyses towards machine throughput and time/space efficiency. This paper presents an empirical study on the functional complexity of software known as cognitive complexity based on large-scale samples using a Software Cognitive Complexity Analysis Tool (SCCAT). Empirical data are obtained with SCCAT on 7,531 programs and five formally specified software systems. The theoretical foundation of software functional complexity is introduced and the metric of software cognitive complexity is formally modeled. The functional complexities of a large-scale software system and the air traffic control systems (ATCS) are rigorously analyzed. A novel approach to represent software functional complexities and their distributions in software systems is developed. The nature of functional complexity of software in software engineering is rigorously explained. The relationship between the symbolic and functional complexities of software is quantitatively analyzed.

Publisher

IGI Global

Subject

Pharmacology (medical)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Situation assessment in air combat considering incomplete frame of discernment in the generalized evidence theory;Scientific Reports;2022-12-31

2. Cognitive Complexity Reduction through Control Flow Graph Generation;2022 IEEE 7th International conference for Convergence in Technology (I2CT);2022-04-07

3. Software Defect Prediction Based on GUHA Data Mining Procedure and Multi-Objective Pareto Efficient Rule Selection;International Journal of Software Science and Computational Intelligence;2014-04

4. The Cognitive Process and Formal Models of Human Attentions;International Journal of Software Science and Computational Intelligence;2013-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3