A Framework for Automated Scraping of Structured Data Records From the Deep Web Using Semantic Labeling

Author:

Kumaresan Umamageswari1,Ramanujam Kalpana1

Affiliation:

1. Pondicherry Engineering College, India

Abstract

The intent of this research is to come up with an automated web scraping system which is capable of extracting structured data records embedded in semi-structured web pages. Most of the automated extraction techniques in the literature captures repeated pattern among a set of similarly structured web pages, thereby deducing the template used for the generation of those web pages and then data records extraction is done. All of these techniques exploit computationally intensive operations such as string pattern matching or DOM tree matching and then perform manual labeling of extracted data records. The technique discussed in this paper departs from the state-of-the-art approaches by determining informative sections in the web page through repetition of informative content rather than syntactic structure. From the experiments, it is clear that the system has identified data rich region with 100% precision for web sites belonging to different domains. The experiments conducted on the real world web sites prove the effectiveness and versatility of the proposed approach.

Publisher

IGI Global

Subject

General Medicine

Reference23 articles.

1. Extracting structured data from web pages.;A.Arasu;Proc. ACM SIGMOD,2003

2. Web harvesting: web data extraction techniques for deep web pages;U.Baskaran;Web usage mining techniques and applications across industries,2017

3. Automated scraping of structured data records from health discussion forums using semantic analysis

4. Web Data Extraction System

5. Böhm, H. J., & Schneider, G. (2008). Virtual Screening for Bioactive Molecules. Retrieved from https://pubs.acs.org/doi/abs/10.1021/ja0152052

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Declarative Query Language Enabled Autonomous Deep Web Search Engine;Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing;2024-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3