Enhancing Multimodal Tourism Review Sentiment Analysis Through Advanced Feature Association Techniques

Author:

Chen Peng1,Fu Lingmei2

Affiliation:

1. Sanya Institute of Technology, China

2. Hainan Provincial Sports Academy, China

Abstract

The development of tourism services presents significant opportunities for extracting and analyzing customer sentiment. However, with the advent of multimodality, travel reviews have brought new challenges. Early methods for detecting such reviews merely combined text and image features, resulting in poor feature correlation. To address this issue, our study proposes a novel multimodal tourism review sentiment analysis method enhanced by relevant features. Initially, we employ a fusion model that combines BERT and Text-CNN for text feature extraction. This approach strengthens semantic relationships and filters noise effectively. Subsequently, we utilize ResNet-51 for image feature extraction, leveraging its ability to learn complex visual representations. Additionally, integrating an attention mechanism further enhances modality correlation, thereby improving fusion effectiveness. On the Multi-ZOL dataset, our method achieves an accuracy of 90.7% and an F1 score of 90.8%. Similarly, on the Ctrip dataset, it attains an accuracy of 83.6% and an F1 score of 84.1%.

Publisher

IGI Global

Reference51 articles.

1. Design of text sentiment analysis tool using feature extraction based on fusing machine learning algorithms

2. Al-Tameemi, I. K. S., Feizi-Derakhshi, M.-R., Pashazadeh, S., & Asadpour, M. (2022). A comprehensive review of visual-textual sentiment analysis from social media networks. Advance online publication. ArXiv. arXiv:2207.02160

3. An, S., Li, Y., Lin, Z., Liu, Q., Chen, B., Fu, Q., Chen, W., Zheng, N., & Lou, J.-G. (2022). Input-tuning: Adapting unfamiliar inputs to frozen pretrained models. Advance online publication. ArXiv. arXiv:2203.03131

4. VQA: Visual question answering.;S.Antol;2015 IEEE International Conference on Computer Vision

5. Sentiment Classification on Suicide Notes Using Bi-LSTM Model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3