Modeling and Computing Overlapping Aggregation of Large Data Sequences in Geographic Information Systems

Author:

En-Nejjary Driss1ORCID,Pinet Francois2,Kang Myoung-Ah3

Affiliation:

1. Université Clermont Auvergne, LIMOS, Irstea, UR TSCF, Clermont-Ferrand, France

2. Université Clermont Auvergne, Irstea, UR TSCF, Centre de Clermont-Ferrand, France

3. Université Clermont-Auvergne, LIMOS, Clermont-Ferrand, France

Abstract

Recently, in the field of information systems, the acquisition of geo-referenced data has made a huge leap forward in terms of technology. There is a real issue in terms of the data processing optimization, and different research works have been proposed to analyze large geo-referenced datasets based on multi-core approaches. In this article, different methods based on general-purpose logic on graphics processing unit (GPGPU) are modelled and compared to parallelize overlapping aggregations of raster sequences. Our methods are tested on a sequence of rasters representing the evolution of temperature over time for the same region. Each raster corresponds to a different data acquisition time period, and each raster geo-referenced cell is associated with a temperature value. This article proposes optimized methods to calculate the average temperature for the region for all the possible raster subsequences of a determined length, i.e., to calculate overlapping aggregated data summaries. In these aggregations, the same subsets of values are aggregated several times. For example, this type of aggregation can be useful in different environmental data analyses, e.g., to pre-calculate all the average temperatures in a database. The present article highlights a significant increase in performance and shows that the use of GPGPU parallel processing enabled us to run the aggregations up to more than 50 times faster than the sequential method including data transfer cost and more than 200 times faster without data transfer cost.

Publisher

IGI Global

Subject

Management of Technology and Innovation,Information Systems

Reference30 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3