Identifying Fraudulent Behaviors in Healthcare Claims Using Random Forest Classifier With SMOTEchnique

Author:

Naga Jyothi P. 1,Rajya Lakshmi D. 2,Rama Rao K. V. S. N. 1

Affiliation:

1. Koneru Lakshmaiah Education Foundation, India

2. University College of Engineering Narasaraopeta, India

Abstract

Detecting fraudulent and abusive cases in healthcare is one of the most challenging problems for data mining studies. Existing studies have a lack of real data for analysis and focus on a very partial version of the problem by covering only a specific actor, healthcare service, or disease. In this article, the proposed strategy identifies fraudulent behaviors in Medicare claims data using several predictors as model inputs. The methodology involves preprocessing and model development phases. At the initial phase, the feature mining is done by estimating their feature importance score. The labeling of instances by using the classification rules to the whole dataset. Thus, a transformed dataset is obtained by the model. In the development phase, the RF with SMOTE is applied against the training and testing data. Specifically, SMOTE adapted to balance data and sorts misclassified instances and finds the interesting instances. The results of the proposed model improvises the classifier performance RF with SMOTE when contrast with RF method.

Publisher

IGI Global

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3