An Ensemble of Random Forest Gradient Boosting Machine and Deep Learning Methods for Stock Price Prediction

Author:

Kumar Ravinder1,Shrivastav Lokesh Kumar2ORCID

Affiliation:

1. Shri Vishwakarma Skill University, India

2. University School of Information, Communication, and Technology, Guru Gobind Singh Indraprastha University, New Delhi, India

Abstract

Stochastic time series analysis of high-frequency stock market data is a very challenging task for the analysts due to the lack availability of efficient tool and techniques for big data analytics. This has opened the door of opportunities for the developer and researcher to develop intelligent and machine learning based tools and techniques for data analytics. This paper proposed an ensemble for stock market data prediction using three most prominent machine learning based techniques. The stock market dataset with raw data size of 39364 KB with all attributes and processed data size of 11826 KB having 872435 instances. The proposed work implements an ensemble model comprises of Deep Learning, Gradient Boosting Machine (GBM) and distributed Random Forest techniques of data analytics. The performance results of the ensemble model are compared with each of the individual methods i.e. deep learning, Gradient Boosting Machine (GBM) and Random Forest. The ensemble model performs better and achieves the highest accuracy of 0.99 and lowest error (RMSE) of 0.1.

Publisher

IGI Global

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3