Predicting the Efficiency and Success Rate of Programming Courses in MOOC Using Machine Learning Approach for Future Employment in the IT Industry

Author:

Gupta Shivangi1ORCID,Sabitha A. Sai1ORCID,Chowdhary Sunil Kumar2

Affiliation:

1. Amity University, Noida, India

2. Amity Univeristy, Noida, India

Abstract

Modern businesses and jobs in demand have witnessed the requirement of programming skills in candidates, for example, business analyst, database administrator, software engineer, software developer, and many more. Programming courses are a very influential and important part of forming the future of the IT industry. Throughout the recent years, a substantial amount of research has been conducted to improve the programming novices, but the problems are returning in every new generation and reporting high failure rates. The dataset used in this study is the ‘CodeChef competition' dataset and the ‘Coursera' dataset. Firstly, this research work conducts the preview analysis to understand the performance of learners in programming languages. Secondly, this work proposes a clear rationale between the popularity of MOOC courses and low completion rates. There is increasingly high enrolment in MOOC courses but with non-ideal completion rates. Finally, it builds the machine learning model and validates the accuracy of the trained model.

Publisher

IGI Global

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3