The Stability of a Class of Fractional Order Switching System with Time-Delay Actuator

Author:

Nabavi Seyed Hossein1,Balochian Saeed1

Affiliation:

1. Gonabad Branch, Islamic Azad University, Gonabad, Iran

Abstract

Since switching systems are important in research and industry, the article is concerned about the stabilization of fractional order switching systems with the order of 1 < q < 2 and a time delay actuator. To this end, the so-called system was initially converted to a system with no delay using a trick, such that the impact of delay was considered in the state matrix of the system in form of a coefficient. In the following, the switching rule was obtained based on the variable structure control with the sliding section. The necessary stability condition for the fractional order switching system with the order of 1 < q < 2 and time delay actuator is presented and approved based on the convex analysis and linear matrix inequalities. Then, a Lyapunov function was introduced with its negative derivative. By defining the Lyapunov function, the system that can be chosen at any time by the switching rule would be stable. Finally, the simulation results were expressed to show the impact of the proposed method.

Publisher

IGI Global

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Reflection Note on Applying Quantitative Decision-Making Approaches to Engineering Management;International Journal of Applied Management Sciences and Engineering;2023-06-13

2. Fractional Order Sliding Mode Control of Quadrotor Based on Fractional Order Model;IEEE Access;2023

3. The Value of Communication Management in Agile Project Environments;International Journal of Applied Logistics;2022-09-16

4. Effective Motivation Theories and Strategies for Project Management Environments;International Journal of Applied Logistics;2022-06-29

5. Effective Culture Theories and Strategies for Project Management Environments;International Journal of Applied Management Sciences and Engineering;2022-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3