Research on Musical Tone Recognition Method Based on Improved RNN for Vocal Music Teaching Network Courses

Author:

Long Kaiyi1

Affiliation:

1. Hunan Mass Media Vocational and Technical College, China

Abstract

The test results show that the fast Fourier process with multiple time superposition and a dimension length of 40 is most beneficial to the accuracy of the model. The loss curve value of the convolutional recurrent network model (CRN) is much lower than the other three models. The music tone recognition model learns better. The accuracy rate value and recall rate value of the CRN are the highest, and the accuracy rates of the four music tone indicators are 94.6%, 92.4%, 93.5%, 92.5%, and the recall rates were 93.2%, 94.9%, 95.2%, and 88.6% respectively; the improved algorithm was the most accurate in terms of F1 values and is suitable for use in vocal music teaching courses. The results show that the algorithm can be broadly performed in the zone of music tone recognition and has a certain contribution to the development of the field of music tone recognition.

Publisher

IGI Global

Subject

Computer Science Applications,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3