A Novel Approach of Product Recommendation Using Utility-Based Association Rules

Author:

Stuti Stuti1,Gupta Kanika1,Srivastava Nishant1,Verma Ankita1

Affiliation:

1. Jaypee Institute of Information Technology, India

Abstract

An exorbitant source of data is easily available but the actual task lies in using this data efficiently. In this article, the aim is to analyse the significant information embedded in the customer purchase behaviour to recommend new products to them. Our proposed scheme is a two-fold approach. First, the authors retrieve various product correlations from the vast library of user transactions. Based on these product correlations, utility based association rules are learned which depict the customer purchase behaviour. These rules are then applied in a recommender system for novel product suggestions to the customers. With improved utility based mining the paper tries to incorporate the usefulness of an item set like cost, profit or any other factor along with their frequency. In this paper the authors have deployed the rules discovered from both the conventional Frequent Item Set Mining and Improved Utility Based Mining on an e-commerce platform to compare the accuracy of the algorithms. The obtained results establish the efficacy of the proposed algorithm.

Publisher

IGI Global

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time analysis of online consumer behavior by decision trees, GUHA association rules, and formal concept analysis;Journal of Marketing Analytics;2024-01-09

2. Development of E-Commerce Recommendation System Based on FP-Growth Algorithm;2023 3rd International Signal Processing, Communications and Engineering Management Conference (ISPCEM);2023-11-25

3. A Hybrid Harmony Search;International Journal of Swarm Intelligence Research;2022-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3