Quality of Experience Models for Multimedia Streaming

Author:

Menkovski Vlado1,Exarchakos Georgios1,Liotta Antonio1,Sánchez Antonio Cuadra2

Affiliation:

1. Eindhoven University of Technology, The Netherlands

2. Telefonica R&D, Spain

Abstract

Understanding how quality is perceived by viewers of multimedia streaming services is essential for efficient management of those services. Quality of Experience (QoE) is a subjective metric that quantifies the perceived quality, which is crucial in the process of optimizing tradeoff between quality and resources. However, accurate estimation of QoE often entails cumbersome studies that are long and expensive to execute. In this regard, the authors present a QoE estimation methodology for developing Machine Learning prediction models based on initial restricted-size subjective tests. Experimental results on subjective data from streaming multimedia tests show that the Machine Learning models outperform other statistical methods achieving accuracy greater than 90%. These models are suitable for real-time use due to their small computational complexity. Even though they have high accuracy, these models are static and cannot adapt to environmental change. To maintain the accuracy of the prediction models, the authors have adopted Online Learning techniques that update the models on data from subjective viewer feedback. This method provides accurate and adaptive QoE prediction models that are an indispensible component of a QoE-aware management service.

Publisher

IGI Global

Subject

Computer Networks and Communications

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Mobile Fog Computing-Assisted DASH QoE Prediction Scheme;Wireless Communications and Mobile Computing;2018-08-28

2. Advances in QoS/E Characterization and Prediction for Next Generation Mobile Communication Systems;Fuzzy Systems;2017

3. An experimental survey of no-reference video quality assessment methods;International Journal of Pervasive Computing and Communications;2016-04-04

4. Advances in QoS/E Characterization and Prediction for Next Generation Mobile Communication Systems;Advances in Wireless Technologies and Telecommunication;2016

5. Accuracy of No-Reference Quality Metrics in Network-impaired Video Streams;Proceedings of the 13th International Conference on Advances in Mobile Computing and Multimedia;2015-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3