Missing Data in OLAP Cubes

Author:

Tremblay Monica Chiarini1ORCID,Hevner Alan R.2

Affiliation:

1. William & Mary, USA

2. University of South Florida, USA

Abstract

Online analytical processing (OLAP) engines display aggregated data to help business analysts compare data, observe trends, and make decisions. Issues of data quality and, in particular, issues with missing data impact the quality of the information. Key decision-makers who rely on these data typically make decisions based on what they assume to be all the available data. The authors investigate three approaches to dealing with missing data: 1) ignore missing data, 2) show missing data explicitly (e.g., as unknown data values), and 3) design mitigation algorithms for missing data (e.g., allocate missing data into known value categories). The authors evaluate the approach with focus groups and controlled experiments. When one tries to inform decision-makers using the approaches in the research, the authors find that they often alter their decisions and adjust their decision confidence: individual differences of tolerance for ambiguity and pre-existing omission bias in the decision context influence their decisions.

Publisher

IGI Global

Subject

Hardware and Architecture,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3