Method of Lexical Enrichment in Information Retrieval System in Arabic

Author:

Mallat Souheyl1,Zouaghi Anis2,Hkiri Emna1,Zrigui Mounir1

Affiliation:

1. Department of Computer Sciences, University of Monastir, Monastir, Tunisia

2. Department of Computer Sciences, Higher Institute of Applied Science and Technologies Sousse, Sousse University, Sousse, Tunisia

Abstract

In this paper, the authors propose a method for lexical enrichment of Arabic queries in order to improve the performance of the information retrieval systems SRI. This method has two types of enrichment: linguistic and contextual. The first one is based on the linguistic analysis (lemmatization, morphological, syntactic and semantic analysis), whose goal is to generate a descriptive list (list-desc). This list contains a set of linguistic lexicon assigned to each significant term in the query. The second enrichment consists in integrating contextual information derived from the corpus documents. It is based on statistical analysis using Salton weighting functions: TF-IDF and TF-IEF. The TF-IDF function is applied on the list-desc and documents in the corpus in order to identify relevant documents. TF-IEF function is made between the list-desc and sentences belonging to the relevant documents to identify relevant sentences. Then, terms in these sentences are weighted, and those with highest weights are considered rich in terms of informative and contextual importance are added to the original query. The authors' lexical enrichment method was evaluated on a corpus of documents belonging to a specialized domain and results show its interest in terms of precision and recall.

Publisher

IGI Global

Reference32 articles.

1. Aliane, H., Alimazighi, Z., & Boughacha, R. (2004). Un Système de reformulation de requêtes pour la recherche d’information. La revue de l'Information Scientifique et Technique (RIST), 14(1). Année 2004. Retrieved from http://www.webreview.dz/IMG/pdf/h.aliane.pdf

2. Andreewsky, A., Binquet, J. P., Debili, F., Fluhr, C., & Pouderoux, B. (1981). Le traitement linguistique et statistique des textes et son application dans la documentation juridique. Actes du Sixième Symposium sur l'Informatique Juridique en Europe, Thessaloniki, Grèce.

3. Local Feedback in Full-Text Retrieval Systems

4. Baeza, R., & Ribeiro, B. (1999).Modern information retrieval. ACM Press Books, Addison-Wesley Edition.

5. Bessou, S., Saadi, A., & Touahria, M. (2008). Vers une recherche d'information plus intelligente application à la langue arabe. In Proceedings of the 1ère Conférence Internationale Systèmes d’Information et Intelligence Economique (SIIE’2008), Hammamet, Tunisie.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Unsupervised Word Representations Models and Neural Networks for Informal Multilingual Text Against Covid-19 Social Media Content;Lecture Notes in Computer Science;2024

2. Optimizing Arabic Named Entity Recognition through Active Learning and AraBERT;2023 International Conference on Innovations in Intelligent Systems and Applications (INISTA);2023-09-20

3. Towards a Hybrid Document Indexing Approach for Arabic Documentary Retrieval System;Advances in Computational Collective Intelligence;2023

4. Arabic speech recognition based on a CNN-BLSTM combination;2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT);2022-05-28

5. An Image Retrieval System Using Deep Learning to Extract High-Level Features;Advances in Computational Collective Intelligence;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3