Recognition of Musical Instrument Using Deep Learning Techniques

Author:

Rajesh Sangeetha1,Nalini N. J. 2

Affiliation:

1. K. J. Somaiya Institute of Management Studies and Research, India

2. Annamalai University, India

Abstract

The proposed work investigates the impact of Mel Frequency Cepstral Coefficients (MFCC), Chroma DCT Reduced Pitch (CRP), and Chroma Energy Normalized Statistics (CENS) for instrument recognition from monophonic instrumental music clips using deep learning techniques, Bidirectional Recurrent Neural Networks with Long Short-Term Memory (BRNN-LSTM), stacked autoencoders (SAE), and Convolutional Neural Network - Long Short-Term Memory (CNN-LSTM). Initially, MFCC, CENS, and CRP features are extracted from instrumental music clips collected as a dataset from various online libraries. In this work, the deep neural network models have been fabricated by training with extracted features. Recognition rates of 94.9%, 96.8%, and 88.6% are achieved using combined MFCC and CENS features, and 90.9%, 92.2%, and 87.5% are achieved using combined MFCC and CRP features with deep learning models BRNN-LSTM, CNN-LSTM, and SAE, respectively. The experimental results evidence that MFCC features combined with CENS and CRP features at score level revamp the efficacy of the proposed system.

Publisher

IGI Global

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3