Particle Swarm Optimization from Theory to Applications

Author:

El-Shorbagy M.A.1,Hassanien Aboul Ella2

Affiliation:

1. Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom, Egypt

2. Department of Information Technology, Faculty of Computers and Information, Cairo University, Giza, Egypt

Abstract

Particle swarm optimization (PSO) is considered one of the most important methods in swarm intelligence. PSO is related to the study of swarms; where it is a simulation of bird flocks. It can be used to solve a wide variety of optimization problems such as unconstrained optimization problems, constrained optimization problems, nonlinear programming, multi-objective optimization, stochastic programming and combinatorial optimization problems. PSO has been presented in the literature and applied successfully in real life applications. In this paper, a comprehensive review of PSO as a well-known population-based optimization technique. The review starts by a brief introduction to the behavior of the PSO, then basic concepts and development of PSO are discussed, it's followed by the discussion of PSO inertia weight and constriction factor as well as issues related to parameter setting, selection and tuning, dynamic environments, and hybridization. Also, we introduced the other representation, convergence properties and the applications of PSO. Finally, conclusions and discussion are presented. Limitations to be addressed and the directions of research in the future are identified, and an extensive bibliography is also included.

Publisher

IGI Global

Subject

General Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3