Risk Assessment Modeling of Urban Railway Investment and Financing Based on Improved SVM Model for Advanced Intelligent Systems

Author:

Ren Rupeng1,Fang Jun1,Hu Jun2,Ma Xiaotong3,Li Xiaoyao2

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan University of Technology, China

2. Ningxia Construction Investment Group Corp., Ltd., China

3. School of Civil Engineering, North Minzu University, China

Abstract

A risk assessment method for urban railway investment and financing based on an improved SVM model under big data is proposed. First, the inner product in the traditional SVM is replaced by a kernel function to obtain a more accurate non-linear SVM, and a classifier with high classification accuracy is achieved by finding the optimal separating hyperplane. Then, a risk index system is constructed based on the grounded theory combining with intuitionistic fuzzy sets, interval intuitionistic fuzzy sets, weighted averaging operators and the distance measure, and the selection method of assessment indexes is analyzed based on the statistical methods. Finally, the SVM model with fuzzy membership is obtained by fuzzifying the input samples of the SVM based on the given rules of fuzzy membership design. The results show that the maximum relative error between the final test results and the actual value is 0.316%, and the minimum relative error is 0.133% with three different test sets being tested in the proposed method, which can accurately assess the investment.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Group Consensus-Driven Energy Consumption Assessment Using Social Network Analysis and Fuzzy Information Fusion;International Journal on Semantic Web and Information Systems;2024-08-16

2. Research on Time Series Data Prediction Based on Machine Learning Algorithms;2024 IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3