Community Detection on Social Networks With Sentimental Interaction

Author:

Feng Bingdao1ORCID,Cheng Fangyu2,Liu Yanfei1,Chang Xinglong1,Wang Xiaobao1,Jin Di1

Affiliation:

1. Tianjin University, China

2. Harbin Institute of Technology, China

Abstract

Many studies on community detection are mainly based on the similarity in friendship between users. Recent studies have started to explore node contents to identify semantically meaningful communities. However, the sentimental interaction information which plays an important role in community detection is often ignored. By analyzing and utilizing the abundant sentimental interaction information, one can not only more precisely identify the communities, but also discover the interesting interactions and conflicts between these communities. Based on this concept, the authors propose a new Community Sentiment Diffusion Detection Model (CSDD), which utilizes sentimental information embedded in forward posts. Furthermore, the authors present an efficient variational algorithm for model inference. The community detection results have been verified on two large Twitter datasets. It is experimentally demonstrated that we can provide a fine-grained view of sentimental interaction between communities and discover the mechanism of sentiment diffusion between communities.

Publisher

IGI Global

Reference45 articles.

1. Block-LDA: Jointly modeling entity-annotated text and entity-entity links

2. Hypothesis testing for automated community detection in networks

3. Latent Dirichlet allocation.;D. M.Blei;Journal of Machine Learning Research,2003

4. Bruna, J., & Li, X. (2017). Community detection with graph neural networks. Stat, 1050, 27.

5. From community detection to community profiling

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Group Consensus-Driven Energy Consumption Assessment Using Social Network Analysis and Fuzzy Information Fusion;International Journal on Semantic Web and Information Systems;2024-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3