An Ensemble Approach for Prediction of Cardiovascular Disease Using Meta Classifier Boosting Algorithms

Author:

Patro Sibo Prasad1,Padhy Neelamadhab1ORCID,Sah Rahul Deo2

Affiliation:

1. GIET University, India

2. Dr. Shyama Prasad Mukherjee University, India

Abstract

There are very few studies are carried for investigating the potential of hybrid ensemble machine learning techniques for building a model for the detection and prediction of heart disease in the human body. In this research, the authors deal with a classification problem that is a hybridization of fusion-based ensemble model with machine learning approaches, which produces a more trustworthy ensemble than the original ensemble model and outperforms previous heart disease prediction models. The proposed model is evaluated on the Cleveland heart disease dataset using six boosting techniques named XGBoost, AdaBoost, Gradient Boosting, LightGBM, CatBoost, and Histogram-Based Gradient Boosting. Hybridization produces superior results under consideration of classification algorithms. The remarkable accuracies of 96.51% for training and 93.37% for testing have been achieved by the Meta-XGBoost classifier.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Reference47 articles.

1. Deep learning approach for active classification of electrocardiogram signals

2. Artificial neural networks in medical diagnosis.;Q. K.Al-Shayea;International Journal of Computer Science Issues,2011

3. Prediction of heart disease and classifiers’ sensitivity analysis

4. A systematic literature review on cardiovascular disorder identification using knowledge mining and machine learning method.;S. I.Ansarullah;Int. J. Recent Technol. Eng.,2019

5. Parallel weak learners, a novel ensemble method

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3