Hardware/Software Co-Design of a Vision System for Automatic Classification of Date Fruits

Author:

Khriji Lazhar1ORCID,Ammari Ahmed Chiheb1,Awadalla Medhat1

Affiliation:

1. Sultan Qaboos University, Oman

Abstract

This paper proposes a hardware/software (HW/SW) co-design of an automatic classification system of Khalas, Khunaizi, Fardh, Qash, Naghal, and Maan dates fruit varieties in Oman. Three artificial intelligence (AI) techniques are used for qualitative comparisons: artificial neural network (ANN), support vector machine (SVM), and K-nearest neighbor (KNN). The accuracy performance of all AI classifiers is characterized for multiple color, shape, size, and texture feature combinations and for different critical parameter settings of the classifiers. In total, 600 date samples (100 dates/variety) are selected and imaged each sample individually. The system starts with preprocessing and segmentation of the colored input images. A total of 19 features are extracted from each image for use in classification models. The ANN classifier is shown to outperform all other classifiers. 97.26% highest classification accuracy is achieved using a combination of 15 color and shape-size features.

Publisher

IGI Global

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wavelet scattering transform and deep features for automated classification and grading of dates fruit;Journal of Ambient Intelligence and Humanized Computing;2024-04-16

2. Implementaciones de selección visual en frutas: revisión sistemática de literatura;Revista científica de sistemas e informática;2024-01-10

3. Transfer Learning and Explainable Artificial Intelligence Enhance the Classification of Date Fruit Varieties;2023 15th International Conference on Innovations in Information Technology (IIT);2023-11-14

4. Accelerated and optimized covariance descriptor for pedestrian detection in self-driving cars;Design Automation for Embedded Systems;2023-04-28

5. Artificial Intelligence Applications in Date Palm Cultivation and Production: A Scoping Review;Artificial Intelligence and Smart Environment;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3