Hierarchical Interpretable Topical Embeddings for Exploratory Search and Real-Time Document Tracking

Author:

Ianina Anastasia1ORCID,Vorontsov Konstantin1ORCID

Affiliation:

1. Moscow Institute of Physics and Technology, Russia

Abstract

Real-time monitoring of scientific papers and technological news requires fast processing of complicated search demands motivated by thematically relevant information acquisition. For this case, the authors develop an exploratory search engine based on probabilistic hierarchical topic modeling. Topic model gives a low dimensional sparse interpretable vector representation (topical embedding) of a text, which is used for ranking documents by their similarity to the query. They explore several ways of comparing topical vectors including searching with thematically homogeneous text segments. Topical hierarchies are built using the regularized EM-algorithm from BigARTM project. The topic-based search achieves better precision and recall than other approaches (TF-IDF, fastText, LSTM, BERT) and even human assessors who spend up to an hour to complete the same search task. They also discover that blending hierarchical topic vectors with neural pretrained embeddings is a promising way of enriching both models that helps to get precision and recall higher than 90%.

Publisher

IGI Global

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3