Malware Detection by Static Checking and Dynamic Analysis of Executables

Author:

Vidyarthi Deepti1,Choudhary S.P.1,Rakshit Subrata2,Kumar C.R.S.1

Affiliation:

1. Defence Institute of Advanced Technology, Pune, India

2. Center of Artificial Intelligence & Robotics, Bangalore, India

Abstract

The advanced malware continue to be a challenge in digital world that signature-based detection techniques fail to conquer. The malware use many anti-detection techniques to mutate. Thus no virus scanner can claim complete malware detection even for known malware. Static and dynamic analysis techniques focus upon different kinds of malware such as Evasive or Metamorphic malware. This paper proposes a comprehensive approach that combines static checking and dynamic analysis for malware detection. Static analysis is used to check the specific code characteristics. Dynamic analysis is used to analyze the runtime behavior of malware. The authors propose a framework for the automated analysis of an executable's behavior using text mining. Text mining of dynamic attributes identifies the important features for classifying the executable as benign and malware. The synergistic combination proposed in this paper allows detection of not only known variants of malware but even the obfuscated, packed and unknown malware variants and malware evasive to dynamic analysis.

Publisher

IGI Global

Subject

Information Systems

Reference27 articles.

1. Graph-based malware detection using dynamic analysis

2. Dynamic Analysis of Malicious Code

3. Bellard, F. (2005). QEMU – A Fast and Portable Dynamic Translator. Proceedings of the FREENIX Track of the USENIX Annual Technical Conference.

4. Buehlmann, S., & Liebchen, C. (2010). Joebox: A Secure Sandbox Application for Windows to Analyse the Behaviour of Malware. Retrieved from http://www.joebox.org/

5. A Simple Method for Detection of Metamorphic Malware using Dynamic Analysis and Text Mining. Procedia;S. P.Choudhary;Computer Science,2015

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Analysis of a Malware Sample: Recognizing its Behavior using Forensic Application;2023 4th IEEE Global Conference for Advancement in Technology (GCAT);2023-10-06

2. Swarm Optimization and Machine Learning Applied to PE Malware Detection towards Cyber Threat Intelligence;Electronics;2023-01-09

3. Deep malware hunter based unrivaled malware detection schema thru cache retrospective empiricism;Concurrency and Computation: Practice and Experience;2022-05-22

4. On the Possibility of Evasion Attacks with Macro Malware;Advances in Intelligent Systems and Computing;2021-10-26

5. An Opcode-Based Malware Detection Model Using Supervised Learning Algorithms;International Journal of Information Security and Privacy;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3