Kömür Yakıcılarında Yanma Verimi Tahmini için Gömülü Platformda Çalışabilen Evrişimsel Sinir Ağının Parametre Analizi

Author:

GÜNDÜZALP Veysel1ORCID,ÇELİK Gaffari2ORCID,TALU Muhammed Fatih1ORCID,ONAT Cem3ORCID

Affiliation:

1. İNÖNÜ ÜNİVERSİTESİ

2. AĞRI İBRAHİM ÇEÇEN ÜNİVERSİTESİ

3. ADIYAMAN ÜNİVERSİTESİ

Abstract

Accurately and effectively calculating combustion efficiency in coal burners is crucial for industrial boiler manufacturers. Two main approaches can be used to calculate boiler efficiency: 1) Analyzing the gas emitted from the flue; 2) Visualizing the combustion chamber in the boiler. Flue gas analyzers, which are not user-friendly, come with high costs. Additionally, the physical distance between the flue and the combustion chamber causes the measurement to be delayed. Methods based on visualizing the combustion chamber do not have these disadvantages. This study proposes a system based on visualizing the combustion chamber and has two contributions to the literature: 1) for the first time, the modern Convolutional Neural Networks (CNN) approach is used to estimate combustion efficiency; 2) the CNN architecture with optimal parameters can work on an embedded platform. When classical classification techniques and a CPU-supported processor card are used, efficiency can be calculated from one flame image in 1.7 seconds, while this number increases to approximately 20 frames per second (34 times faster) when the proposed CNN architecture and GPU-supported processor card are used. The results obtained demonstrate the superiority of the proposed CNN architecture and hardware over classical approaches in estimating coal boiler combustion efficiency.

Publisher

Bingol Universitesi

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference30 articles.

1. Onat C, Talu MF, Daskin M, Mercimek M. Otomatik Beslemeli Kömür Kazanlarinda Alev Formu İle Yanma Verimi Arasindaki İlişkinin İncelenmesi. Mühendis ve Makine 2015; 669: 70–79, 2015.

2. Testo SE, KGaA Co. Baca gazı ölçüm cihazları. 2019 [cited 2019 October 30. Available from: https://www.testo.com/tr-TR/ueruenler/gaz-oelcuem-cihazlatri.

3. Lee CL, Jou CJG. Saving fuel consumption and reducing pollution emissions for industrial furnace. Fuel Process. Technol. 2011; 92(12):2335–2340.

4. Hao Z, Kefa C, Jianbo M. Combining neural network and genetic algorithms to optimize low NOx pulverized coal combustion. Fuel: 2011; 80 (15): 2163–2169.

5. Hao Z, Qian X, Cen K, Jianren F. Optimizing pulverized coal combustion performance based on ANN and GA. Fuel Process. Technol. 2004; 85 (2–3):113–124.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3