Author:
Andraši Petar,Radišić Tomislav,Novak Doris,Juričić Biljana
Abstract
Air traffic complexity is usually defined as difficulty of monitoring and managing a specific air traffic situation. Since it is a psychological construct, best measure of complexity is that given by air traffic controllers. However, there is a need to make a method for complexity estimation which can be used without constant controller input. So far, mostly linear models were used. Here, the possibility of using artificial neural networks for complexity estimation is explored. Genetic algorithm has been used to search for the best artificial neural network configuration. The conclusion is that the artificial neural networks perform as well as linear models and that the remaining error in complexity estimation can only be explained as inter-rater or intra-rater unreliability. One advantage of artificial neural networks in comparison to linear models is that the data do not have to be filtered based on the concept of operations (conventional vs. trajectory-based).
Publisher
Faculty of Transport and Traffic Sciences
Subject
Engineering (miscellaneous),Ocean Engineering,Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献