Evaluation of the Stripping Performance of Monochlorotriazine/Vinyl Sulphone Reactive Dyes with a Reductive Stripping Agent
-
Published:2023-01-04
Issue:4
Volume:65
Page:256-267
-
ISSN:2350-3696
-
Container-title:Tekstilec
-
language:
-
Short-container-title:TEKS
Author:
Pervin Mahfuza, Sultana Sanjida, Fahmi Fahmida FaizaORCID, Yasmin Zinia, Swati Sushama Saha
Abstract
The wet processing industry experiences various problems, such as the faulty and uneven shade of dyeing, colour patch formation on the surface of dyed fabric, etc. during the dyeing and subsequent processing of textile materials. Stripping is considered a process that helps to reuse faulty dyed fabrics by minimizing dyeing faults. The aim of this paper is to evaluate the effectiveness of stripping agents and the quality of stripped cotton knit fabrics that were coloured using bi-functional (monochlorotriazine/vinyl sulphone) reactive dyes. First, the trichromatic combination of Drimarene Yellow CL2R, Drimarene Red CL5B and Drimarene Blue HFRL dyes was used to dye fabrics in two different shade percentages, namely light shade (0.3% owf) and dark shade (3.0% owf). Consequently, stripping was carried out using varying concentrations of stripping chemicals (hydrose (Na2S2O4) and caustic soda (NaOH)) and process temperatures. Stripped fabrics were assessed after measuring the weight loss percentage, strength loss percentage, whiteness index and stripping efficiency. The results of that assessment showed a relatively better stripping performance with the chemical concentration of 5 g/L hydrose and 5 g/L caustic soda at 100 °C. Under this condition, the value of the whiteness index and stripping efficiency were adequate, with a minimum weight loss percentage and strength loss percentage. The stripping performance for the light shade (0.3% owf) fabric was deemed to be better than that for the dark shade (3.0% owf) fabric.
Publisher
University of Ljubljana
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,General Business, Management and Accounting,Business and International Management
Reference15 articles.
1. BURKINSHAW, S.M., SALIHU, G. The role of auxiliaries in the immersion dyeing of textile fibres: Part 6 analysis of conventional models that describe the manner by which inorganic electrolytes promote reactive dye uptake on cellulosic fibres. Dyes and Pigments, 2019, 161, 595–604, doi: 10.1016/j.dyepig.2017.09.028. 2. HANBING, W., HAASE, H., MAHLTIG, B. Cationic pretreatment for reactive dyeing of cotton and its simultaneous antibacterial functionalisation. Tekstilec, 2020, 63(1), 27–37, doi: 10.14502/Tekstilec2020.63.27-37. 3. LEWIS, D.M. Developments in the chemistry of reactive dyes and their application processes. Coloration Technology, 2014, 130(6), 382–412, doi: 10.1111/cote.12114. 4. SLAMA, H. B., CHENARI BOUKET, A., POURHASSAN, Z., ALENEZI, F. N., SILINI, A., CHERIF-SILINI, H., OSZAKO, T., LUPTAKOVA, L., GOLIŃSKA, P., BELBAHRI, L. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Applied Sciences, 2021, 11(14), 1–21, doi: 10.3390/app11146255. 5. ISLAM, M.R., MOSTAFA, M.G. Textile dyeing effluents and environment concerns - a review. Journal of Environmental Science and Natural Resources, 2019, 11(1–2), 131–144, doi: 10.3329/jesnr.v11i1-2.43380.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|