A Dynamic Magnetic Resonance Imaging–Based Method to Examine In Vivo Levator Veli Palatini Muscle Function During Speech

Author:

Pelland Catherine M.1,Feng Xue2,Borowitz Kathleen C.3,Meyer Craig H.24,Blemker Silvia S.1256

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville

2. Department of Biomedical Engineering, University of Virginia, Charlottesville

3. Department of Rehabilitation Therapy Services, Speech-Language Pathology, University of Virginia Health System, Charlottesville

4. Department of Radiology, University of Virginia, Charlottesville

5. Department of Orthopaedic Surgery, University of Virginia, Charlottesville

6. Department of Ophthalmology, University of Virginia, Charlottesville

Abstract

Purpose The aim of this study was to develop a method able to quantify levator veli palatini (LVP) muscle shortening and contraction velocities using dynamic magnetic resonance imaging (MRI) throughout speech samples and relate these measurements to velopharyngeal portal dimensions. Method Six healthy adults (3 men and 3 women, M = 24.5 years) produced syllables representing 4 different manners of production during real-time dynamic MRI scans. We acquired an oblique-coronal slice of the velopharyngeal mechanism, which captured the length of the LVP, and manually segmented each frame. LVP shortening and muscle velocities were calculated from the acquired images. Results Using our method, we found that subjects demonstrated greater LVP shortening and higher maximum contraction velocities during fricative and plosive syllable production than during nasal or vowel syllable production. LVP shortening and maximum contraction velocity positively correlated with velopharyngeal port depth. Conclusions In vivo LVP function differs between manners of production, as expected, and an individual's velopharyngeal portal dimensions influence LVP function. These measures, contextualized with the force–length and force–velocity muscle relationships, provide new insight into LVP function. Future studies could use this method to investigate LVP function in healthy speakers and individuals with velopharyngeal dysfunction and how function relates to velopharyngeal anatomy.

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3