Investigating Narrative Performance in Children With Developmental Language Disorder: A Systematic Review and Meta-Analysis

Author:

Winters Katherine L.1ORCID,Jasso Javier12ORCID,Pustejovsky James E.3ORCID,Byrd Courtney T.1ORCID

Affiliation:

1. The University of Texas at Austin

2. Widener University, Chester, PA

3. University of Wisconsin–Madison

Abstract

Purpose: Narrative assessment is one potentially underutilized and inconsistent method speech-language pathologists may use when considering a diagnosis of developmental language disorder (DLD). However, narration research encompasses many varied methodologies. This systematic review and meta-analysis aimed to (a) investigate how various narrative assessment types (e.g., macrostructure, microstructure, and internal state language) differentiate children with typical development (TD) from children with DLD, (b) identify specific narrative assessment measures that result in greater group differences, and (c) evaluate participant and sample characteristics that may influence performance differences. Method: Electronic databases (PsycINFO, ERIC, and PubMed) and ASHAWire were searched on July 30, 2019, to locate studies that reported oral narrative language measures for both DLD and TD groups between ages 4 and 12 years; studies focusing on written narration or other developmental disorders only were excluded. We extracted data related to sample participants, narrative task(s) and assessment measures, and research design. Group differences were quantified using standardized mean differences. Analyses used mixed-effects meta-regression with robust variance estimation to account for effect size dependencies. Results: Searches identified 37 eligible studies published between 1987 and 2019, including 382 effect sizes. Overall meta-analysis showed that children with DLD had decreased narrative performance relative to TD peers, with an overall average effect of −0.82 SD , 95% confidence interval [−0.99, −0.66]. Effect sizes showed significant heterogeneity both between and within studies, even after accounting for effect size–, sample-, and study-level predictors. Across model specifications, grammatical accuracy (microstructure) and story grammar (macrostructure) yielded the most consistent evidence of TD–DLD group differences. Conclusions: Present findings suggest some narrative assessment measures yield significantly different performance between children with and without DLD. However, researchers need to improve consistency of inclusionary criteria, descriptions of sample characteristics, and reporting of correlations between measures to determine which assessment measures reliably distinguish between groups. Supplemental Material: https://doi.org/10.23641/asha.21200380

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3