Frequency-Following Response to Steady-State Vowel in Quiet and Background Noise Among Marching Band Participants With Normal Hearing

Author:

Suresh Chandan H.1ORCID,Krishnan Ananthanarayan2

Affiliation:

1. Department of Communication Disorders, California State University, Los Angeles

2. Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN

Abstract

Objective: Human studies enrolling individuals at high risk for cochlear synaptopathy (CS) have reported difficulties in speech perception in adverse listening conditions. The aim of this study is to determine if these individuals show a degradation in the neural encoding of speech in quiet and in the presence of background noise as reflected in neural phase-locking to both envelope periodicity and temporal fine structure (TFS). To our knowledge, there are no published reports that have specifically examined the neural encoding of both envelope periodicity and TFS of speech stimuli (in quiet and in adverse listening conditions) among a sample with loud-sound exposure history who are at risk for CS. Method: Using scalp-recorded frequency-following response (FFR), the authors evaluated the neural encoding of envelope periodicity (FFR ENV ) and TFS (FFR TFS ) for a steady-state vowel (English back vowel /u/) in quiet and in the presence of speech-shaped noise presented at +5- and 0 dB SNR. Participants were young individuals with normal hearing who participated in the marching band for at least 5 years (high-risk group) and non–marching band group with low-noise exposure history (low-risk group). Results: The results showed no group differences in the neural encoding of either the FFR ENV or the first formant (F1) in the FFR TFS in quiet and in noise. Paradoxically, the high-risk group demonstrated enhanced representation of F2 harmonics across all stimulus conditions. Conclusions: These results appear to be in line with a music experience–dependent enhancement of F2 harmonics. However, due to sound overexposure in the high-risk group, the role of homeostatic central compensation cannot be ruled out. A larger scale data set with different noise exposure background, longitudinal measurements with an array of behavioral and electrophysiological tests is needed to disentangle the nature of the complex interaction between the effects of central compensatory gain and experience-dependent enhancement.

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3