Isolation of formononetin-7-O-β-D-glucopyranoside from the grass of Ononis arvensis L. and the assessment of its effect on induced platelet activation

Author:

Bogoutdinova A. M.1ORCID,Whaley A. K.1ORCID,Ponkratova A. O.1ORCID,Orlova A. A.1,Goncharov M. Yu.1ORCID,Shpakova V. S.2ORCID,Farmanova N. T.3ORCID,Nurullaeva D. Kh.3ORCID,Sharipov A. T.3ORCID,Gambaryan S. P.2,Povydysh M. N.1

Affiliation:

1. Saint-Petersburg State Chemical-Pharmaceutical University

2. Federal State Budgetary Institution of Science Institute of Evolutionary Physiology and Biochemistry. I. M. Sechenov Russian Academy of Sciences

3. Tashkent Pharmaceutical Institute

Abstract

Introduction. Analysis of the clinical and laboratory picture of the SARS-CoV-2 infection suggests the presence of microcirculation and oxygen transport disorders, hemolysis of erythrocytes, intra-alveolar fibrin formation and microthrombus formation in the patient’s pathogenesis. Accordingly, the search for potential anticoagulants, erythrocyte antiplatelet agents, membrane stabilizing drugs and mild thrombolytic drugs can prevent the development of life-threatening complications and reduce the mortality of COVID-19 patients.Aim. Isolation of formononetin-7-O-β-D-glucopyranoside from the grass of Ononis arvensis L. and identification of the molecular mechanisms of its effect on platelet activation in vitro, induced by TRAP-6 (Thrombin receptor activated peptide) and ADP (adenosine diphosphate).Materials and methods. Terrestrial parts of Ononis arvensis L. were collected in the SPCPU nursery of medicinal plants (Leningrad region, Vsevolozhsky district, Priozerskoe highway, 38 km). Isolation of formononetin-7-O-β-D-glucopyranoside was carried out by preparative high performance liquid chromatography on a Smartline device (Knauer, Germany) equipped with a spectrophotometric detector. The structure of formononetin-7-O-β-D-glucopyranoside was confirmed by one-dimensional and two-dimensional NMR spectroscopy (Bruker Avance III, 400 MHz, Germany), as well as high-resolution mass spectrometry (HR-ESI-MS) (Bruker Micromass Q-TOF, Germany). The study of the effect of formononetin- 7-O-β-D-glucopyranoside on induced platelet activation was carried out on human platelets isolated from the blood of healthy volunteers. To research the effect of formononetin-7-О-β-D-glucopyranoside on platelet aggregation flow cytofluorometry with Cyto-FLEX (Beckman-Coulter, USA) was used.Results and discussion. According to the method of fractionation and purification of the total extract of O. arvensis developed in previous studies, formononetin-7-O-β-D-glucopyranoside was isolated in an individual form for subsequent biological studies with a total yield of 30 % in comparison with its content in the original extract. In samples with formononetin-7-O-β-D-glucopyranoside and ADP, there is a pronounced inhibition of platelet activation – the percentage of active platelets ranges from 6.3–6.6 % at doses of formononetin-7-O-β-D-glucopyranoside 1 μM, 3 μM and 30 μM. The inhibitory effect of formononetin-7-O-β-D-glucopyranoside is not dose-dependent (p ≤ 0.05). In samples with formononetin-7-O-β-D-glucopyranoside and TRAP, there is also a pronounced inhibition of platelet activation. The percentage of active platelets is 8 % at 1 μM formononetin-7-O-β-D-glucopyranoside doses, 15 % at 3 μM doses, and 16 % at 30 μM doses.Conclusion. Administration of formononetin-7-O-β-D-glucopyranoside at doses of 1 μM, 3 μM, 30 μM strongly inhibits platelet activation induced by ADP and TRAP-6. For ADP, there is no dose-dependent effect, while for TRAP there is a weak dose-dependent effect, the greatest inhibition efficiency is achieved with the minimum investigated dose of 1 μM. In all cases, the results obtained are statistically significant.

Publisher

Center of Pharmaceutical Analytics Ltd

Subject

Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3