Eudragit® EPO, modified with 4-phenylboronic acid groups, as a novel polymeric excipient with enhanced mucoadhesive properties

Author:

Gordeeva D. S.1ORCID,Nasibullin S. F.1ORCID,Karpov A. G.1ORCID,Khutoryanskiy V. V.2ORCID,Moustafine R. I.1ORCID

Affiliation:

1. Institute of Pharmacy, Kazan State Medical University

2. Reading School of Pharmacy, University of Reading

Abstract

Introduction. In the pharmaceutical technology field there is great interest in polymers with mucoadhesive properties, as they increase the drug retention time on the mucosal surface and increase the bioavailability of the drug. There are various mucoadhesive drug delivery systems: tablets, films, gels, suspensions of micro- and nanoparticles, etc. The ability to adhesion depends on the excipients, especially on their chemical structure. Molecular weight, surface charge, flexibility of the polymer chain and the presence of various functional groups play an important role. Polymers under the trade name Eudragit®, produced by the German concern Evonik Nutrition & Care GmbH, have been used in the pharmaceutical field for several decades to produce controlled-release oral dosage forms. Eudragit® EPO (EPO) is a ternary copolymer based on methacrylic acid derivatives and has mucoadhesive properties due to the presence of dimethylamino groups in its structure. The proposed chemical modification of Eudragit® EPO with a phenylboronic acid derivative, due to the presence of hydroxyl groups in their structure, leads to additional interaction with mucin oligosaccharides, providing enhanced mucoadhesive properties of this polymer.Aim. Synthesis and study of a chemically modified Eudragit® EPO using 4-bromophenylboronic acid in order to increase the mucoadhesive properties of the copolymer for use in transmucosal drug delivery systems.Materials and methods. The synthesis of chemically modified Eudragit® EPO (BEPO) was carried out for 24 hours at 50 °C, followed by purification by dialysis using a dialysis membrane (MMO = 12–14 kDa; Medicell International Ltd, UK) for 7 days and freeze drying at –50 °C and 0.05 mbar using Heto Power Dry LL 3000 (Thermo Electron Corporation, USA) for 5 days. Confirmation of the formation of ВЕРО was carried out by ATR-FTIR spectroscopy on a Nicolet iS5 spectrometer (Thеrmо Fisher Sciеntific, USA) and 1H-NMR spectroscopy on a DPX 400 MHz device (Bruker, Germany). Thermogravimetric analysis (TGA) and modulated differential scanning calorimetry (mDSC) were performed using Discovery TGA™ and Discovery DSC™ (TA Instruments, USA), respectively. The study of mucoadhesive properties was performed by the ability to retain the copolymer on the isolated sheep nasal mucosa at 37.0 ± 0.5 °C for 30 minutes.Results and discussion. BEPO was prepared with a substitution degree of dimethylamino groups with phenylboronic acid of 25 % (BEPO25) and 50 % (BEPO50). The yields of BEPO25 and BEPO50 were 40.70 and 30.79 %. The new characteristic band appears at 1605 cm–1 in the IR spectrum of BEPO, which indicates the attachment of phenylboronic acid to EPO. In the 1H-NMR spectrum of BEPO, the formation of additional peaks in the range of 7.8 and 7.5 ppm is observed, which are absent in the EPO spectrum, which indicates the presence of phenylboronic acid. According to TGA results the samples of boronated EPO have the thermal stability similar to the original EPO. The results of DSC analysis show that the glass transition temperature (Tg) of BEPO samples is somehow higher than the original EPO, which is probably associated with a decrease in the amount of free dimethylamino groups in the terpolymer structure. BEPO50 is retained on the surface of isolated sheep nasal mucosa for 30 minutes, while EPO is washed off with artificial nasal fluid in 5 minutes.Conclusion. The development and study of BEPO is a promising direction for further use in transmucosal drug delivery systems.

Publisher

Center of Pharmaceutical Analytics Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3