Complexity of Supersymmetric Systems and the Cohomology Problem

Author:

Cade Chris1,Crichigno P. Marcos2

Affiliation:

1. QuSoft & CWI, Amsterdam, the Netherlands.

2. Blackett Laboratory, Imperial College Prince Consort Rd., London, SW7 2AZ, U.K.

Abstract

We consider the complexity of the local Hamiltonian problem in the context of fermionic Hamiltonians with N=2 supersymmetry and show that the problem remains QMA-complete. Our main motivation for studying this is the well-known fact that the ground state energy of a supersymmetric system is exactly zero if and only if a certain cohomology group is nontrivial. This opens the door to bringing the tools of Hamiltonian complexity to study the computational complexity of a large number of algorithmic problems that arise in homological algebra, including problems in algebraic topology, algebraic geometry, and group theory. We take the first steps in this direction by introducing the k-local Cohomology problem and showing that it is QMA1-hard and, for a large class of instances, is contained in QMA. We then consider the complexity of estimating normalized Betti numbers and show that this problem is hard for the quantum complexity class DQC1, and for a large class of instances is contained in BQP. In light of these results, we argue that it is natural to frame many of these homological problems in terms of finding ground states of supersymmetric fermionic systems. As an illustration of this perspective we discuss in some detail the model of Fendley, Schoutens, and de Boer consisting of hard-core fermions on a graph, whose ground state structure encodes l-dimensional holes in the independence complex of the graph. This offers a new perspective on existing quantum algorithms for topological data analysis and suggests new ones.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3