Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the λϕ4 model
Author:
Martínez Pablo Viñas1, López Esperanza1, Bermudez Alejandro1
Affiliation:
1. Instituto de Física Teórica, UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
Abstract
The quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins, which are encoded in the internal electronic states of the ions, and measured in experiments that probe the real-time dynamics. These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field ϕ(x) locally coupled to the spins that acts as a carrier, leading to an analogue of pion-mediated Yukawa interactions. In the vicinity of a structural transition of the ion crystal, one must go beyond the Klein-Gordon fields, and include additional λϕ4 terms responsible for phonon-phonon scattering. This leads to quantum effects that can be expressed by Feynman loop integrals that modify the range of the Yukawa-type spin interactions; an effect that could be used to probe the underlying fixed point of this quantum field theory (QFT). Unfortunately, the rigidity of the trapped-ion crystal makes it challenging to observe genuine quantum effects, such as the flow of the critical point with the quartic coupling λ. We hereby show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs. We perform self-consistent calculations that resum certain Feynman diagrams and, additionally, go beyond mean-field theory to predict how measurements on the trapped-ion spin system can probe key properties of the λϕ4 QFT.
Funder
MCIU/AEI/FEDER, UE CSIC Research Platform on Quantum Technologies PTI-001 EU Quantum Technology Flagship grant AQTION “MILLENION- SGA1” EU Project
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Reference181 articles.
1. A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eisert, D. Esteve, N. Gisin, S. J. Glaser, F. Jelezko, S. Kuhr, M. Lewenstein, M. F. Riedel, P. O. Schmidt, R. Thew, A. Wallraff, I. Walmsley, and F. K. Wilhelm, New Journal of Physics 20, 080201 (2018). 2. M. Mohseni, P. Read, H. Neven, S. Boixo, V. Denchev, R. Babbush, A. Fowler, V. Smelyanskiy, and J. Martinis, Nature 543, 171 (2017). 3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000). 4. L. Postler, S. Heu$\beta$en, I. Pogorelov, M. Rispler, T. Feldker, M. Meth, C. D. Marciniak, R. Stricker, M. Ringbauer, R. Blatt, P. Schindler, M. Müller, and T. Monz, Nature 605, 675 (2022). 5. S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, G. J. Norris, C. K. Andersen, M. Müller, A. Blais, C. Eichler, and A. Wallraff, Nature 605, 669 (2022).
|
|