Randomized measurement protocols for lattice gauge theories
Author:
Bringewatt Jacob12, Kunjummen Jonathan12, Mueller Niklas3
Affiliation:
1. Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA 2. Joint Quantum Institute/NIST, University of Maryland, College Park, Maryland 20742, USA 3. InQubator for Quantum Simulation (IQuS), Department of Physics, University of Washington, Seattle, WA 98195, USA.
Abstract
Randomized measurement protocols, including classical shadows, entanglement tomography, and randomized benchmarking are powerful techniques to estimate observables, perform state tomography, or extract the entanglement properties of quantum states. While unraveling the intricate structure of quantum states is generally difficult and resource-intensive, quantum systems in nature are often tightly constrained by symmetries. This can be leveraged by the symmetry-conscious randomized measurement schemes we propose, yielding clear advantages over symmetry-blind randomization such as reducing measurement costs, enabling symmetry-based error mitigation in experiments, allowing differentiated measurement of (lattice) gauge theory entanglement structure, and, potentially, the verification of topologically ordered states in existing and near-term experiments. Crucially, unlike symmetry-blind randomized measurement protocols, these latter tasks can be performed without relearning symmetries via full reconstruction of the density matrix.
Funder
National Science Foundation U.S. Department of Energy (DOE) ASCR Accelerated Research in Quantum Computing program NSF QLCI DoE ASCR Quantum Testbed Pathfinder program InQubator for Quantum Simulation (IQuS) under DOE U.S. Department of Energy’s Office of Science, Office of Nuclear Physics
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Reference187 articles.
1. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, Nat. Commun. 5, 1 (2014). 2. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Nature 549, 242 (2017). 3. C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, et al., Nature 569, 355 (2019). 4. J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H. Booth, et al., Phys. Rep. 986, 1 (2022). 5. J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, Nat. Rev. Phys. 2, 382 (2020).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|