Zero and Finite Temperature Quantum Simulations Powered by Quantum Magic

Author:

Gu Andi1,Hu Hong-Ye1,Luo Di123,Patti Taylor L.4,Rubin Nicholas C.5,Yelin Susanne F.13

Affiliation:

1. Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA

2. Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

3. The NSF AI Institute for Artificial Intelligence and Fundamental Interactions

4. NVIDIA, Santa Clara, CA 95051, USA

5. Google Quantum AI, Venice, CA 90291, United States

Abstract

We introduce a quantum information theory-inspired method to improve the characterization of many-body Hamiltonians on near-term quantum devices. We design a new class of similarity transformations that, when applied as a preprocessing step, can substantially simplify a Hamiltonian for subsequent analysis on quantum hardware. By design, these transformations can be identified and applied efficiently using purely classical resources. In practice, these transformations allow us to shorten requisite physical circuit-depths, overcoming constraints imposed by imperfect near-term hardware. Importantly, the quality of our transformations is tunable: we define a 'ladder' of transformations that yields increasingly simple Hamiltonians at the cost of more classical computation. Using quantum chemistry as a benchmark application, we demonstrate that our protocol leads to significant performance improvements for zero and finite temperature free energy calculations on both digital and analog quantum hardware. Specifically, our energy estimates not only outperform traditional Hartree-Fock solutions, but this performance gap also consistently widens as we tune up the quality of our transformations. In short, our quantum information-based approach opens promising new pathways to realizing useful and feasible quantum chemistry algorithms on near-term hardware.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3