Block-encoding structured matrices for data input in quantum computing

Author:

Sünderhauf Christoph1,Campbell Earl12,Camps Joan1

Affiliation:

1. Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom

2. Dept. of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom

Abstract

The cost of data input can dominate the run-time of quantum algorithms. Here, we consider data input of arithmetically structured matrices via block encoding circuits, the input model for the quantum singular value transform and related algorithms. We demonstrate how to construct block encoding circuits based on an arithmetic description of the sparsity and pattern of repeated values of a matrix. We present schemes yielding different subnormalisations of the block encoding; a comparison shows that the best choice depends on the specific matrix. The resulting circuits reduce flag qubit number according to sparsity, and data loading cost according to repeated values, leading to an exponential improvement for certain matrices. We give examples of applying our block encoding schemes to a few families of matrices, including Toeplitz and tridiagonal matrices.

Funder

UK Commercialising Quantum Technologies Programme

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Reference46 articles.

1. Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Cambridge University Press, Cambridge ; New York, 10th anniversary ed edition, 2010. ISBN 978-1-107-00217-3.

2. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574 (7779), October 2019. ISSN 1476-4687. 10.1038/s41586-019-1666-5. URL https://www.nature.com/articles/s41586-019-1666-5.

3. IBM. IBM Unveils Breakthrough 127-Qubit Quantum Processor, 2021. URL https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor.

4. Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, Tung-Hsun Chung, Hui Deng, Yajie Du, Daojin Fan, Ming Gong, Cheng Guo, Chu Guo, Shaojun Guo, Lianchen Han, Linyin Hong, He-Liang Huang, Yong-Heng Huo, Liping Li, Na Li, Shaowei Li, Yuan Li, Futian Liang, Chun Lin, Jin Lin, Haoran Qian, Dan Qiao, Hao Rong, Hong Su, Lihua Sun, Liangyuan Wang, Shiyu Wang, Dachao Wu, Yu Xu, Kai Yan, Weifeng Yang, Yang Yang, Yangsen Ye, Jianghan Yin, Chong Ying, Jiale Yu, Chen Zha, Cha Zhang, Haibin Zhang, Kaili Zhang, Yiming Zhang, Han Zhao, Youwei Zhao, Liang Zhou, Qingling Zhu, Chao-Yang Lu, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Strong quantum computational advantage using a superconducting quantum processor. Physical Review Letters, 127 (18): 180501, October 2021. ISSN 0031-9007, 1079-7114. 10.1103/PhysRevLett.127.180501. URL http://arxiv.org/abs/2106.14734. arXiv:2106.14734 [quant-ph].

5. Scott Aaronson. How Much Structure Is Needed for Huge Quantum Speedups?, September 2022. URL http://arxiv.org/abs/2209.06930. arXiv:2209.06930 [quant-ph].

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3