Block-encoding structured matrices for data input in quantum computing
Author:
Sünderhauf Christoph1, Campbell Earl12, Camps Joan1
Affiliation:
1. Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom 2. Dept. of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
Abstract
The cost of data input can dominate the run-time of quantum algorithms. Here, we consider data input of arithmetically structured matrices via block encoding circuits, the input model for the quantum singular value transform and related algorithms. We demonstrate how to construct block encoding circuits based on an arithmetic description of the sparsity and pattern of repeated values of a matrix. We present schemes yielding different subnormalisations of the block encoding; a comparison shows that the best choice depends on the specific matrix. The resulting circuits reduce flag qubit number according to sparsity, and data loading cost according to repeated values, leading to an exponential improvement for certain matrices. We give examples of applying our block encoding schemes to a few families of matrices, including Toeplitz and tridiagonal matrices.
Funder
UK Commercialising Quantum Technologies Programme
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Reference46 articles.
1. Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Cambridge University Press, Cambridge ; New York, 10th anniversary ed edition, 2010. ISBN 978-1-107-00217-3. 2. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574 (7779), October 2019. ISSN 1476-4687. 10.1038/s41586-019-1666-5. URL https://www.nature.com/articles/s41586-019-1666-5. 3. IBM. IBM Unveils Breakthrough 127-Qubit Quantum Processor, 2021. URL https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor. 4. Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, Tung-Hsun Chung, Hui Deng, Yajie Du, Daojin Fan, Ming Gong, Cheng Guo, Chu Guo, Shaojun Guo, Lianchen Han, Linyin Hong, He-Liang Huang, Yong-Heng Huo, Liping Li, Na Li, Shaowei Li, Yuan Li, Futian Liang, Chun Lin, Jin Lin, Haoran Qian, Dan Qiao, Hao Rong, Hong Su, Lihua Sun, Liangyuan Wang, Shiyu Wang, Dachao Wu, Yu Xu, Kai Yan, Weifeng Yang, Yang Yang, Yangsen Ye, Jianghan Yin, Chong Ying, Jiale Yu, Chen Zha, Cha Zhang, Haibin Zhang, Kaili Zhang, Yiming Zhang, Han Zhao, Youwei Zhao, Liang Zhou, Qingling Zhu, Chao-Yang Lu, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Strong quantum computational advantage using a superconducting quantum processor. Physical Review Letters, 127 (18): 180501, October 2021. ISSN 0031-9007, 1079-7114. 10.1103/PhysRevLett.127.180501. URL http://arxiv.org/abs/2106.14734. arXiv:2106.14734 [quant-ph]. 5. Scott Aaronson. How Much Structure Is Needed for Huge Quantum Speedups?, September 2022. URL http://arxiv.org/abs/2209.06930. arXiv:2209.06930 [quant-ph].
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|