Quantum-embeddable stochastic matrices

Author:

Shahbeigi Fereshte1,Chubb Christopher T.2,Kukulski Ryszard31,Pawela Łukasz3,Korzekwa Kamil1

Affiliation:

1. Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland

2. Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland

3. Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland

Abstract

The classical embeddability problem asks whether a given stochastic matrix T, describing transition probabilities of a d-level system, can arise from the underlying homogeneous continuous-time Markov process. Here, we investigate the quantum version of this problem, asking of the existence of a Markovian quantum channel generating state transitions described by a given T. More precisely, we aim at characterising the set of quantum-embeddable stochastic matrices that arise from memoryless continuous-time quantum evolution. To this end, we derive both upper and lower bounds on that set, providing new families of stochastic matrices that are quantum-embeddable but not classically-embeddable, as well as families of stochastic matrices that are not quantum-embeddable. As a result, we demonstrate that a larger set of transition matrices can be explained by memoryless models if the dynamics is allowed to be quantum, but we also identify a non-zero measure set of random processes that cannot be explained by either classical or quantum memoryless dynamics. Finally, we fully characterise extreme stochastic matrices (with entries given only by zeros and ones) that are quantum-embeddable.

Funder

Foundation for Polish Science through TEAM-NET project

European Union’s Horizon 2020 research and innovation programme

Swiss National Science Foundation through the Sinergia grant

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3