The Complexity of Being Entangled

Author:

Baiguera Stefano1ORCID,Chapman Shira1ORCID,Policastro Giuseppe2ORCID,Schwartzman Tal1

Affiliation:

1. Department of Physics, Ben-Gurion University of the Negev, David Ben Gurion Boulevard 1, Beer Sheva 84105, Israel

2. Laboratoire de Physique de l'École Normale Supérieure, CNRS, PSL Research University and Sorbonne Universités, 24 rue Lhomond, 75005 Paris, France

Abstract

Nielsen's approach to quantum state complexity relates the minimal number of quantum gates required to prepare a state to the length of geodesics computed with a certain norm on the manifold of unitary transformations. For a bipartite system, we investigate binding complexity, which corresponds to norms in which gates acting on a single subsystem are free of cost. We reduce the problem to the study of geodesics on the manifold of Schmidt coefficients, equipped with an appropriate metric. Binding complexity is closely related to other quantities such as distributed computing and quantum communication complexity, and has a proposed holographic dual in the context of AdS/CFT. For finite dimensional systems with a Riemannian norm, we find an exact relation between binding complexity and the minimal Rényi entropy. We also find analytic results for the most commonly used non-Riemannian norm (the so-called F1 norm) and provide lower bounds for the associated notion of state complexity ubiquitous in quantum computation and holography. We argue that our results are valid for a large class of penalty factors assigned to generators acting across the subsystems. We demonstrate that our results can be borrowed to study the usual complexity (not-binding) for a single spin for the case of the F1 norm which was previously lacking from the literature. Finally, we derive bounds for multi-partite binding complexities and the related (continuous) circuit complexity where the circuit contains at most 2-local interactions.

Funder

Israel Science Foundation

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3