Simple master equations for describing driven systems subject to classical non-Markovian noise

Author:

Groszkowski Peter12,Seif Alireza1,Koch Jens3,Clerk A. A.1

Affiliation:

1. Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA

2. National Center for Computational Sciences, Oak Ridge National Laboratory, TN 37831, USA

3. Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA

Abstract

Driven quantum systems subject to non-Markovian noise are typically difficult to model even if the noise is classical. We present a systematic method based on generalized cumulant expansions for deriving a time-local master equation for such systems. This master equation has an intuitive form that directly parallels a standard Lindblad equation, but contains several surprising features: the combination of driving and non-Markovianity results in effective time-dependent dephasing rates that can be negative, and the noise can generate Hamiltonian renormalizations even though it is classical. We analyze in detail the highly relevant case of a Rabi-driven qubit subject to various kinds of non-Markovian noise including 1/f fluctuations, finding an excellent agreement between our master equation and numerically-exact simulations over relevant timescales. The approach outlined here is more accurate than commonly employed phenomenological master equations which ignore the interplay between driving and noise.

Funder

Department of Energy BES Quantum Information Science Program

ARO

Simons Foundation through a Simons Investigator award

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3