A Quadratic Speedup in the Optimization of Noisy Quantum Optical Circuits

Author:

De Prins Robbe1,Yao Yuan2,Apte Anuj34,Miatto Filippo M.23

Affiliation:

1. Photonics Research Group, INTEC, Ghent University – imec, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

2. Télécom Paris and Institut Polytechnique de Paris, LTCI, 20 Place Marguerite Perey, 91120 Palaiseau, France

3. Xanadu, Toronto, ON, M5G 2C8, Canada

4. Kadanoff Center for Theoretical Physics & Enrico Fermi Institute, Department of Physics, University of Chicago, Chicago, IL 60637

Abstract

Linear optical quantum circuits with photon number resolving (PNR) detectors are used for both Gaussian Boson Sampling (GBS) and for the preparation of non-Gaussian states such as Gottesman-Kitaev-Preskill (GKP), cat and NOON states. They are crucial in many schemes of quantum computing and quantum metrology. Classically optimizing circuits with PNR detectors is challenging due to their exponentially large Hilbert space, and quadratically more challenging in the presence of decoherence as state vectors are replaced by density matrices. To tackle this problem, we introduce a family of algorithms that calculate detection probabilities, conditional states (as well as their gradients with respect to circuit parametrizations) with a complexity that is comparable to the noiseless case. As a consequence we can simulate and optimize circuits with twice the number of modes as we could before, using the same resources. More precisely, for an M-mode noisy circuit with detected modes D and undetected modes U, the complexity of our algorithm is O(M2∏i∈UCi2∏i∈DCi), rather than O(M2∏i∈D∪UCi2), where Ci is the Fock cutoff of mode i. As a particular case, our approach offers a full quadratic speedup for calculating detection probabilities, as in that case all modes are detected. Finally, these algorithms are implemented and ready to use in the open-source photonic optimization library MrMustard.

Funder

The Research Foundation – Flanders

Excellence of Science (EOS) research programme

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3