Localizing and excluding quantum information; or, how to share a quantum secret in spacetime

Author:

Hayden Patrick1,May Alex2

Affiliation:

1. Stanford University

2. The University of British Columbia

Abstract

When can quantum information be localized to each of a collection of spacetime regions, while also excluded from another collection of regions? We answer this question by defining and analyzing the localize-exclude task, in which a quantum system must be localized to a collection of authorized regions while also being excluded from a set of unauthorized regions. This task is a spacetime analogue of quantum secret sharing, with authorized and unauthorized regions replacing authorized and unauthorized sets of parties. Our analysis yields the first quantum secret sharing scheme for arbitrary access structures for which the number of qubits required scales polynomially with the number of authorized sets. We also study a second related task called state-assembly, in which shares of a quantum system are requested at sets of spacetime points. We fully characterize the conditions under which both the localize-exclude and state-assembly tasks can be achieved, and give explicit protocols. Finally, we propose a cryptographic application of these tasks which we call party-independent transfer.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The connected wedge theorem and its consequences;Journal of High Energy Physics;2022-11-28

2. Bulk private curves require large conditional mutual information;Journal of High Energy Physics;2021-09

3. Holographic quantum tasks with input and output regions;Journal of High Energy Physics;2021-08

4. Distributing bipartite quantum systems under timing constraints;Journal of Physics A: Mathematical and Theoretical;2021-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3