POVMs are equivalent to projections for perfect state exclusion of three pure states in three dimensions

Author:

Molina Abel1ORCID

Affiliation:

1. Institute for Quantum Computing and School for Computer Science, University of Waterloo

Abstract

Performing perfect/conclusive quantum state exclusion means to be able to discard with certainty at least one out ofnpossible quantum state preparations by performing a measurement of the resulting state. This task of state exclusion has recently been studied at length in \cite{bandyopadhyay2014conclusive}, and it is at the heart of the celebrated PBR thought experiment \cite{pusey2012reality}. When all the preparations correspond to pure states and there are no more of them than their common dimension, it is an open problem whether POVMs give any additional power for this task with respect to projective measurements. This is the case even for the simple case of three states in three dimensions, which is mentioned in \cite{caves2002conditions} as unsuccessfully tackled. In this paper, we give an analytical proof that in this case considering POVMs does indeed not give any additional power with respect to projective measurements. To do so, we first make without loss of generality some assumptions about the structure of an optimal POVM. The justification of these assumptions involves arguments based on convexity, rank and symmetry properties. We show then that any pure states perfectly excluded by such a POVM meet the conditions identified in \cite{caves2002conditions} for perfect exclusion by a projective measurement of three pure states in three dimensions. We also discuss possible generalizations of our work, including an application of Quadratically Constrained Quadratic Programming that might be of special interest.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systematic mapping study on domain-specific language development tools;Empirical Software Engineering;2020-08-28

2. Communication of partial ignorance with qubits;Journal of Physics A: Mathematical and Theoretical;2019-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3