Nearly tight Trotterization of interacting electrons

Author:

Su Yuan12ORCID,Huang Hsin-Yuan13ORCID,Campbell Earl T.4

Affiliation:

1. Institute for Quantum Information and Matter, Caltech, Pasadena, CA 91125, USA

2. Google Research, Venice, CA 90291, USA

3. Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA 91125, USA

4. AWS Center for Quantum Computing, Pasadena, CA 91125, USA

Abstract

We consider simulating quantum systems on digital quantum computers. We show that the performance of quantum simulation can be improved by simultaneously exploiting commutativity of the target Hamiltonian, sparsity of interactions, and prior knowledge of the initial state. We achieve this using Trotterization for a class of interacting electrons that encompasses various physical systems, including the plane-wave-basis electronic structure and the Fermi-Hubbard model. We estimate the simulation error by taking the transition amplitude of nested commutators of the Hamiltonian terms within the η-electron manifold. We develop multiple techniques for bounding the transition amplitude and expectation of general fermionic operators, which may be of independent interest. We show that it suffices to use (n5/3η2/3+n4/3η2/3)no(1) gates to simulate electronic structure in the plane-wave basis with n spin orbitals and η electrons, improving the best previous result in second quantization up to a negligible factor while outperforming the first-quantized simulation when n=η2o(1). We also obtain an improvement for simulating the Fermi-Hubbard model. We construct concrete examples for which our bounds are almost saturated, giving a nearly tight Trotterization of interacting electrons.

Funder

National Science Foundation

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dense outputs from quantum simulations;Journal of Computational Physics;2024-10

2. Probing Quantum Efficiency: Exploring System Hardness in Electronic Ground State Energy Estimation;Journal of Chemical Theory and Computation;2024-07-01

3. Average-Case Speedup for Product Formulas;Communications in Mathematical Physics;2024-02

4. Towards near-term quantum simulation of materials;Nature Communications;2024-01-24

5. Parallel Quantum Algorithm for Hamiltonian Simulation;Quantum;2024-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3