Affiliation:
1. Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Abstract
We explore a method for automatically recompiling a quantum circuit A into a target circuit B, with the goal that both circuits have the same action on a specific input i.e. B∣in⟩=A∣in⟩. This is of particular relevance to hybrid, NISQ-era algorithms for dynamical simulation or eigensolving. The user initially specifies B as a blank template: a layout of parameterised unitary gates configured to the identity. The compilation then proceeds using quantum hardware to perform an isomorphic energy-minimisation task, and an optional gate elimination phase to compress the circuit. If B is insufficient for perfect recompilation then the method will result in an approximate solution. We optimise using imaginary time evolution, and a recent extension of quantum natural gradient for noisy settings. We successfully recompile a 7-qubit circuit involving 186 gates of multiple types into an alternative form with a different topology, far fewer two-qubit gates, and a smaller family of gate types. Moreover we verify that the process is robust, finding that per-gate noise of up to 1% can still yield near-perfect recompilation. We test the scaling of our algorithm on up to 20 qubits, recompiling into circuits with up to 400 parameterized gates, and incorporate a custom adaptive timestep technique. We note that a classical simulation of the process can be useful to optimise circuits for today's prototypes, and more generally the method may enable `blind' compilation i.e. harnessing a device whose response to control parameters is deterministic but unknown.The code and resources used to generate our results are openly available online \cite{githubLink} \cite{mmaGithubLink}. A simple Mathematica demonstration of our algorithm can be found at questlink.qtechtheory.org.
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献