Hybrid use of a robotic welding system in remote laser separation of thin-sheet Al casings for the recycling of battery packs

Author:

D’Arcangelo Simone1ORCID,Busatto Matteo1ORCID,Caprio Leonardo1ORCID,Previtali Barbara1ORCID,Demir Ali Gökhan1ORCID

Affiliation:

1. Department of Mechanical Engineering, Politecnico di Milano , Via La Masa 1, 20156 Milan, Italy

Abstract

Robotic systems equipped with high-power laser sources are often employed for the production of battery packs for the electric mobility sector. Considering the strive toward a circular manufacturing economy, there is great interest in the possibility of reconfiguring such equipment for dismantling operations. The present study explores the hybrid use of a robotized fiber laser welding system, adapting its scope from joining of battery casings toward the separation of the same thin Al sheets, enabling the recycling of the internal cells of the battery pack. Process feasibility is assessed by tailoring the beam size as well as exploiting dynamic beam oscillation to perform the separation process. Dynamic beam oscillation allows us to obtain a smaller kerf width and greater process stability with respect to linear trajectories with larger beam sizes. The damage to underlying cells of the separation region was also assessed on different materials (Al, Ni-plated steel, and Cu). Greater surface modifications and higher peak temperatures (in excess of 800 °C) were recorded when employing dynamic beam oscillation with respect to linear trajectories. This research demonstrates a pathway for reutilization of the existing technological systems for a circular and sustainable production chain in the e-mobility sector.

Funder

Italian Ministry of Education and Research

Publisher

Laser Institute of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3