Affiliation:
1. Institute of Precision Machining (KSF), Hochschule Furtwangen University 1 , Tuttlingen 78532, Germany
2. Department of Microsystems Engineering (IMTEK), University of Freiburg 2 , Freiburg 79110, Germany
Abstract
A fundamental understanding of ablation in different incidence angles is indispensable to expand the result to volume ablation where nonperpendicular irradiation exists. So far, no study with this orientation has been conducted in the category of volume laser machining. In this study, a nanosecond laser with different fluencies was utilized for single-point ablation experiments. The effect of incidence angles of 0°, 30°, and 60° on the ablation depth and the crater geometry was evaluated. Different laser pulse numbers are also considered. The results show that the ablation depth for 0° and 30° angles is almost in the same range for the initial pulses, but afterward, the ablation depth for the incidence 30° drops considerably. As the number of incident pulses increases, the ablation depth first develops approximately linearly and then grows exponentially. By changing the incident from 0° to 60°, the affecting area changes as well. The affecting area could be categorized into two distinct areas: (1) ablation area (A.A) where the crater ablation depth rapidly increases for the first 20 pulses and then, as more incident pulses arrive, it does not grow anymore and reaches a plateau due to the increase in the ablation depth. The second area (2) is the heat-affected area (H.A.A) of the crater where no further ablation occurs, but due to heat accumulation, it becomes constantly bigger when more incident pulses strike the crater. This heat-affected area tends to stay almost constant for the first incident pulses (up to 10) and, after a sharp increase, tends to enlarge steadily as the number of incident pulses rises to 70.
Publisher
Laser Institute of America
Subject
Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献