Investigation of influence of oscillation amplitude on keyhole and molten pool morphologies during oscillating laser stake welding of dissimilar materials T-joints

Author:

Ai Yuewei12ORCID,Liu Jiabao12ORCID,Han Shibo12ORCID

Affiliation:

1. School of Traffic and Transportation Engineering, Central South University 1 , Changsha 410075, People’s Republic of China

2. Key Laboratory of Traffic Safety on Track of Ministry of Education, Central South University 2 , Changsha 410075, People’s Republic of China

Abstract

The morphologies of the keyhole and molten pool during the laser welding process are highly related to weld formation process, which affects the weld quality further. To investigate the influence of the oscillation amplitude on the morphology evolution processes of the keyhole and molten pool during the oscillating laser stake welding of dissimilar materials T-joints, a three-dimensional multiphase flow numerical model is developed. The circular shaped oscillating laser stake welding processes of dissimilar materials T-joints under different oscillation amplitudes are calculated and analyzed in detail. The results show that the depth of the keyhole decreases and the widths of the molten pool and weld at the interface increase with the increase in the oscillation amplitude during the circular shaped oscillating laser stake welding of dissimilar materials T-joints. The periodical expansion and contraction of the keyhole are formed during the welding process. The collapse of the keyhole may cause bubbles in the molten pool due to the instability of the keyhole, and these bubbles also can be captured by the keyhole later.

Funder

National Natural Science Foundation of China

Central South University Innovation-Driven Research Programme

Fundamental Research Funds for Central Universities of the Central South University

Province Project of Innovative Zones for Demonstrating National Sustainable Development Agenda in Chenzhou

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3