Online source tracing of waste paper by smoke based on laser-induced breakdown spectroscopy

Author:

Chen Ziang12ORCID,Zhai Ruoyu12,Cai Yuyao2,Ye Yanpeng2ORCID,Sun Zhongmou2,Liu Yuzhu12ORCID

Affiliation:

1. School of Teacher Education, Nanjing University of Information Science and Technology 1 , Nanjing 210044, China

2. Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET) 2 , Nanjing 210044, China

Abstract

Paper is a widely used material and common recyclable household waste in waste disposal, which gets more attention nowadays for the misclassification of recyclable waste. In this work, an online source tracing system combined with machine learning algorithms to identify and classify the smoke of waste paper incineration based on laser-induced breakdown spectroscopy (LIBS) was established. Four types of waste paper, including tissue, corrugated paper, printing paper, and newspaper, were taken as examples. The smoke of four different waste papers was detected by LIBS and then further analyzed. The detected spectra with C, N, O, Mg, Al, and Ca could hardly be distinguished artificially. The random forest algorithm and the linear discriminant analysis were introduced to classify the smoke, and its accuracy reached 95.83%. The results indicate that source tracing of waste paper can be realized by identifying and classifying the smoke via the developed system. This could provide some reference for helping us to monitor the effectiveness of waste classification and incineration and monitor the atmosphere pollution.

Funder

National Natural Science Foundation of China

National College Students Innovation and Entrepreneurship Training Program

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3