Інформаційна технологія підтримки прийняття рішень лікаря-анестезіолога для вибору анестезіологічного забезпечення при кесаревому розтині

Author:

Висоцька О. В.ORCID,Георгіянц М. А.ORCID,Страшненко Г. М.ORCID,Порван А. П.ORCID,Довнар О. Й.ORCID,Куліш С. М.ORCID

Abstract

Вибір анестезіологічного забезпечення при кесаревому розтині (КР) в сучасному акушерстві набуває особливої актуальності, оскільки має сприяти адекватному захисту вагітної від операційного стресу та створити оптимальні умови адаптації плода. Анестезіолог у сучасному акушерстві грає набагато більшу роль, ніж просто ведення наркозу при КР і надання допомоги в найближчому післяпологовому періоді. Незважаючи на наявність численних схем анестезії при КР, досі продовжується пошук альтернативних оптимальних методів та засобів. Велике значення для вирішення цього питання надається інформаційним технологіям. Стаття присвячена розробці інформаційної технології підтримки прийняття рішень лікаря-анестезіолога для вибору анестезіологічного забезпечення при КР. Розроблено метод вибору анестезіологічного забезпечення при КР на основі аналітичних мереж, що враховують взаємозалежність між ознаками та зворотні зв'язки. Запропоновано структуру мережної моделі для вибору оптимального методу анестезії при КР залежно від індивідуальних особливостей вагітної, яка дозволяє підвищити достовірність та обґрунтованість рішення на етапі формування анестезіологічних заходів. Розроблений метод був покладений в основу інформаційної технології підтримки прийняття рішень лікаря-анестезіолога. Застосування розробленої інформаційної технології в акушерській практиці дозволить забезпечити підтримку прийняття рішення в задачі вибору анестезіологічного забезпечення при КР, яка необхідна практикуючим лікарям-анестезіологам і сприятливо вплине на зниження материнських і перинатальних ризиків.

Publisher

Ivan Kozhedub Kharkiv National Air Force University KNAFU

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3