Mathematical modeling of resistive states and dynamic switching of a metal oxide memristor

Author:

Ebrahim Abdulla H.1,Udovichenko Sergey Yu.1

Affiliation:

1. University of Tyumen

Abstract

A mathematical model of resistive states and dynamic switching of a memristor from a low-conductive to a highly-conductive state is presented. The model based on a physical model of charge transport without taking into account the heat transfer process in the metal-oxide-metal structure with the dominant transport mechanism of electron tunneling through oxygen vacancies migrating under the influence of an inhomogeneous self-consistent electric field. An analytical solution for the oxygen vacancies distribution over the oxide layer was found by the approximation of a constant electric field. The memristor model with inhomogeneous electric field is implemented as a specialized program based on the finite difference method for solving a stationary nonlinear first-order differential equation. This model well describes the physical effect of reduction in the conductivity growth of a thin dielectric layer under the dominant transport mechanism of electron tunneling through oxygen vacancies, which arises as a result of an increase in the concentration of trapped electrons with increasing voltage at the electrodes near the threshold switching voltage. Numerical modeling of discrete resistive states and dynamic resistive switching of a memristor has been carried out. The obtained current-voltage characteristic of the memristor with the help of numerical simulation is in better agreement with the experimental data compared to the analytical simulation. The numerical model can be used in the research and development of memristors with given electrical characteristics. A simple analytical memristor model, which does not require a large amount of computation, is applicable for modeling basic processes such as write operation, signal summation, and associative self-learning that occur in super-large memory and logic matrices of a biomorphic neuroprocessor when memristors are used as synapses of neurons.

Publisher

Tyumen State University

Reference22 articles.

1. Gorshkov O. N., Antonov I. N., Belov A. I., Kasatkin A. P., Tikhov S. V., Shenina M. E., Koryazhkina M. N. 2013. “Investigation of oxygen ion diffusion in resistive switching MIM structures based on yttria-stabilized zirconia”. Vestnik of Lobachevsky University of Nizhni Novgorod, no. 5 (1), pp. 51-54. [In Russian]

2. Zhuravskij D. V., Bobylev A. N., Udovichenko S. Yu., Filippov V. A. 2015. “The similarity of synapse properties and properties of memristor used in an electronic device establishing”. Neurocomputers: Design and Application, no. 11, pp. 95-101. [In Russian]

3. Islamov D. R., Gritsenko V. A., Chin A. 2017. “Charge transport in thin hafnium and zirconium oxide films”. Optoelectronics, Instrumentation and Data Processing, vol. 53, no. 2, pp. 184-189. DOI: 10.3103/S8756699017020121 [In Russian]

4. Maevsky O. V., Pisarev A. D., Busygin A. N., Udovichenko S. Yu. 2016. “Logical commutator and a storage device based on memristor cells for electrical circuits of neuroprocessor”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 2, no. 4, pp. 100-111. DOI: 10.21684/2411-7978-2016-2-4-100-111 [In Russian]

5. Pisarev A. D., Busygin A. N., Bobylev A. N., Udovichenko S. Yu. 2017. “Combined memristor-diode crossbar as a memory storage base”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 3, no. 4, pp. 142-149. DOI: 10.21684/2411-7978-2017-3-4-142-149 [In Russian]

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algorithms for building and operation modeling of large electrical circuits with memristor-diode crossbars in a biomorphic neuroprocessor;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2022

2. Mathematical modeling of memristor resistive switching based on mass transfer full model of oxygen vacancies and ions;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2022

3. THERMOPHYSICAL MODEL OF A MEMRISTOR-DIODE MICROCHIP;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3