PLANT REFLECTED SPECTRA DEPENDING ON BIOLOGICAL CHARACTERISTICS AND GROWTH CONDITIONS

Author:

KARLOVSKA Amanda1,GRĪNFELDE Inga1,ALSIŅA Ina1,PRIEDĪTIS Gints1,ROZE Daina2

Affiliation:

1. Latvia University of Agriculture

2. National Botanic Garden of Latvia

Abstract

Sustainable and economically based forestry needs modern inventory and monitoring techniques. One of the most common technologies for identification of forest tree species and monitoring of forest growth conditions is the hyperspectral remote sensing. This technology gives an opportunity to economize human resources and time for data collecting and processing. The spectral behaviour of plant leaves depends on number of factors, including environmental background. The aim of this study was to assess the tree reflectance spectra in relation to the growth conditions to take into account potential differences for increasing precision of species identification in Latvian forests and for estimating of forest growth conditions. Remote sensing data were obtained using a specialized aircraft (Pilatus PC-6), which is equipped with a high-performance airborne VNIR pushbroom hyperspectral system (AisaEAGLE). The study area was flown at 1000 m altitude. Data was recorded in the 400–970 nm spectral range, spectral resolution was 3.3 nm, ground resolution 0.5 m. Data processing consisted of manually selecting trees with a recognizable tree crowns in the airborne images. Tree centres were adjusted by putting them in the accurate position according to the situation in aerial photography. All trees with a diameter at breast height DBH of more than 5 cm were measured and for each tree coordinates, its species, height, DBH, crown width and length were recorded. Differentially corrected Global Positioning System measurements were used to determine the position of each plot centre. Data from different hyperspectral bands were compared using ANOVA at confidence level 95 %. Four species: Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst), silver birch (Betula pendula Roth), and European aspen (Populus tremula L.) – were examined in distinct forest site types. The spectral response of studied species was 1) different between species and 2) different between site types within each species, correlating with soil fertility gradient and soil moisture gradient. Differences between species occurred most in the intensity of reflected electromagnetic radiation rather than distinctive locations of maximums or minimums in spectrum curve, and near infrared (NIR) region of spectrum showed more differences between species than visible light zone. Most informative wavebands for distinguishing differences between site types were 805 nm and 644 nm.

Publisher

Aleksandras Stulginskis University

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3