Hybrid System Modeling for Renewable Energy Sources

Author:

Rtemi Laila,El-Osta Wedad,Attaiep Ahmad

Abstract

The main goal of this study is to design optimize and design a hybrid wind/PV solar power system to provide the premises of the Libyan Center for Solar Energy Research Center (LCSERS) with the required energy and investigates its technical and economic feasibility. HOMER simulation program is used to design the off-grid and assess the feasible solution and economic cost. The power systems are optimized based on the electricity load, climatic data sources, the economics of the power components, and other parameters in which the total Net Present Cost (NPC) must be minimized to select an economically feasible power system. Moreover, other parameters like a renewable fraction, capacity shortage, Cost of Energy (COE), and excess electricity, were also considered to check the technical capability. Sensitivity analysis of the most influential variables has been considered in four scenarios of capacity shortage. In the off-grid hybrid system, the best option is the fourth scenario, where the capacity shortage is 5% of the 60,385.6 kWh/yr electric load, peaking at 43.45 kw, because the lowest COE is 0.222 $ and the NPC is 168,173 $. The system consists of a 20 kW PV, one turbine of 25 kW, and 72 Hoppecke batteries of 1500.Ah each. The annual share of wind energy was 77%, and solar energy was 22.9%. The estimated excess of electricity was 58.3%.

Publisher

Center for Solar Energy Research and Studies

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference16 articles.

1. Al Senussi Mustafa, A. F. The untapped Potential of renewable energy in selected MENA countries: Government plans and strategies for solar thermal heating in Tunisia and Libya (Doctoral dissertation, Wien), 2021.

2. NASA Atmospheric Science Data Centre, NASA Surface Meteorology and Solar Energy: Available from: http://eosweb.larc.nasa.gov/, Last Accessed 5th March 2013.

3. Libyan climatic archives, Climate Department, Libyan National Meteorological Centre (LNMC), 2009.

4. Asheibe, Ali, and Ashraf Khalil. "The renewable energy in Libya: Present difficulties and remedies." the Proceedings of the World Congress, 2013.

5. Mohamed, A. M. A. Investigation into the feasibility of the utilization of renewable energy resources in Libya. Nottingham Trent University (United Kingdom), 2016.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3